Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 10, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The parameterization of suspended sediments in vegetated flows presents a significant challenge, yet it is crucial across various environmental and geophysical disciplines. This study focuses on modeling suspended sediment concentrations (SSC) in vegetated flows with a canopy density ofavH ∈ [0.3, 1.0] by examining turbulent dispersive flux. While conventional studies disregard dispersive momentum flux foravH> 0.1, our findings reveal significant dispersive sediment flux for large particles with a diameter‐to‐Kolmogorov length ratio whendp/η > 0.1. Traditional Rouse alike approaches therefore must be revised to account for this effect. We introduce a hybrid methodology that combines physical modeling with machine learning to parameterize dispersive flux, guided by constraints from diffusive and settling fluxes, characterized using recent covariance and turbulent settling methods, respectively. The model predictions align well with reported SSC data, demonstrating the versatility of the model in parameterizing sediment‐vegetation interactions in turbulent flows.more » « less
-
Abstract Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.more » « less
-
Abstract Projected increases in hurricane intensity under a warming climate will have profound effects on many forest ecosystems. One key challenge is to disentangle the effects of wind damage from the myriad factors that influence forest structure and species distributions over large spatial scales. Here, we employ a novel machine learning framework with high‐resolution aerial photos, and LiDAR collected over 115 km2of El Yunque National Forest in Puerto Rico to examine the effects of topographic exposure to two hurricanes, Hugo (1989) and Georges (1998), and several landscape‐scale environmental factors on the current forest height and abundance of a dominant, wind‐resistant species, the palmPrestoea acuminata var. montana. Model predictions show that the average density of the palm was 32% greater while the canopy height was 20% shorter in forests exposed to the two storms relative to unexposed areas. Our results demonstrate that hurricanes have lasting effects on forest canopy height and composition, suggesting the expected increase in hurricane severity with a warming climate will alter coastal forests in the North Atlantic.more » « less
-
Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting ensembles with limited qubit controls and unknown spin locations. The generated states enable sensing beyond the standard quantum limit (SQL) and approaching the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment.more » « less
-
As the popularity of quantum computing continues to grow, efficient quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis and optimization of job / resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing.This paper proposes optimized adaptive job scheduling to the quantum cloud taking note of primary characteristics such as queuing times and fidelity trends across machines, as well as other characteristics such as quality of service guarantees and machine calibration constraints. Key components of the proposal include a) a prediction model which predicts fidelity trends across machine based on compiled circuit features such as circuit depth and different forms of errors, as well as b) queuing time prediction for each machine based on execution time estimations.Overall, this proposal is evaluated on simulated IBM machines across a diverse set of quantum applications and system loading scenarios, and is able to reduce wait times by over 3x and improve fidelity by over 40% on specific usecases, when compared to traditional job schedulers.more » « less
An official website of the United States government

Full Text Available